The steady-state confinement, beta limit, and divertor heat load are among the most concerned issues for toroidal confinement of fusion plasmas. In this work, we show that the negative triangularity tokamak has promising prospects to address these issues. We first demonstrate that the negative triangularity tokamak generates the filed line rotation transform more effectively. This brings bright prospects for the advanced steady-state tokamak scenario. Given this, the MHD stability and equilibrium confinement of negative triangularity tokamak are investigated. We point out that the negative triangularity configuration with a broad pressure profile is indeed more unstable for low-n magnetohydrodynamic modes than the positive triangularity case so that the H-mode confinement can hardly be achieved in this configuration, where n is the toroidal mode number. Nevertheless, we found that the negative triangularity configuration with high bootstrap current fraction, high poloidal beta, and peaked pressure profiles can achieve higher normalized beta for low-n modes than the positive triangularity case. In a certain parameter domain, the normalized beta can reach about twice the extended Troyon limit, while the same computation indicates that the positive triangularity configuration is indeed constrained by the Troyon limit. This shows that the negative triangularity tokamaks are not only favorable for divertor design to avoid the edge localized modes but also can have promising prospects for advanced steady-state confinement of fusion plasmas in high beta.