The thulium-doped fiber amplifier stands out as the most promising amplifier within the S-band spectrum. This paper delves into the exploration of a 1.47um Tm^(3+)-doped fluorinated fiber amplifier as the primary subject of research. This paper approach begins by establishing the rate equation and power propagation equation for the thulium ion level structure, followed by rigorous mathematical analysis and solutions. Subsequently, we employ MATLAB programming to perform comprehensive calculations, scrutinizing the amplified spontaneous emission spectra's variation concerning Thulium-Doped Fiber Amplifier (TDFA) length and pump power. In a quest for optimal performance, this paper turn to the simulated annealing algorithm to fine-tune the doping concentration and fiber length, ultimately achieving the most favorable output spectral gain. Through systematic experimentation and parameter manipulation, we've unveiled a substantial breakthrough, with our research yielding an impressive optimal gain of 31.71 dB. The ramifications of this work extend far beyond the confines of this study. It sets a solid foundation for advancements in fiber fabrication and paves the way for the realization of fiber lasers, promising significant contributions to the expansion of S-band fiber communication systems. Our findings hold great promise and are poised to drive innovation in this critical area of telecommunications.
Read full abstract