On 18 February 2021 the Mars 2020 mission’s Perseverance rover successfully landed on Jezero crater. The spacecraft’s entry, descent, and landing (EDL) sequence included a 21.53 m supersonically deployed disk-gap-band (DGB) parachute that was a strengthened version of the parachute used by the Mars Science Laboratory mission to land the Curiosity rover in 2012. This paper will provide an overview of the Mars 2020 parachute decelerator system, summarize the methodology and data sources used to reconstruct the spacecraft’s trajectory, and describe the parachute system’s performance in flight. The parachute system was found to have performed nominally throughout. The parachute was mortar deployed at a Mach number of 1.82 and a dynamic pressure of 518 Pa. The deployment, canopy extraction, and inflation were observed to be orderly with no significant causes for concern identified. The peak inflation force was 152.3 kN (34.2 klbf), which was well below the parachute’s flight limit load of 222 kN (50 klbf). Following inflation, the supersonic and subsonic aerodynamics of the parachute and the dynamics of the system were nominal.
Read full abstract