This paper proposes a single-phase, transformer-less, seven-level inverter that utilizes eight switches, three capacitors, and two diodes to produce seven voltage levels with triple boosting ability. The availability of the common-ground point eliminates the leakage current in PV applications. The proposed Transformer-Less Triple-Boosting Seven-Level Inverter (TLTB7LI) has the ability to feed different types of loads from non-unity to unity power factors. The voltage balancing of capacitors takes place naturally without the need for auxiliary circuits and complicated control strategies. This paper investigates the appropriateness of the proposed TLTB7LI for grid-connected application. The Peak Current Controller (PCC) is employed to generate the switching pulses and regulate the active/reactive power transfer between the converter and the output, which guarantees the high quality of injected current to the output. Moreover, the operational principles, its control technique, as well as the design procedure of the key components of the proposed inverter have been presented. The superiority of the proposed inverter over existing counterparts has been verified through comparative analysis. The simulation and experimental analysis validated the proper operation of the proposed TLTB7LI.
Read full abstract