Programmed death-1 and its ligand-1 (PD-1/PD-L1), immune checkpoints proteins, play a crucial role in anti-tumor responses. A large number of studies have evaluated the relationships of PD-1/PD-L1 polymorphisms with risk of cancer, but evidence for the associations remains inconsistent. Therefore, we performed a meta-analysis to examine the associations between PD-1/PD-L1 single nucleotide polymorphisms (SNPs) and cancer predisposition. Results showed that PD-1.3 and PD-L1 rs17718883 were significantly correlated with overall cancer risk. PD-1.5 was prominently linked with cervical cancer (CC), non-small cell lung cancer (NSCLC), TC (thyroid cancer), brain tumor, AML (acute myelocytic leukemia) and UCC (urothelial cell carcinoma) risk, PD-1.9 with breast cancer (BC), AML, esophageal cancer (EC) and ovarian cancer (OC) risk, and PD-1.3 with colorectal cancer (CRC) and BCC (basal cell carcinoma) risk. PD-1.1 polymorphism slightly elevated BC and OC susceptibility, whereas the rs4143815 variant notably decreased the risk of gastric cancer (GC), hepatocellular carcinoma (HCC) and OC, but increased the risk of BC. PD-1.6 was closely linked with AML risk, PD-L1 rs2890658 with NSCLC, HCC and BC risk, rs17718883 with HCC and GC risk, rs10815225 with GC risk, and rs2297136 with NSCLC and HCC risk. Interestingly, the rs7421861, rs10815225, and rs10815225 markedly reduced cancer susceptibility among Asians. The rs7421861 polymrophism decreased cancer risk among Caucasians, rather than the rs10815225 elevated cancer risk. Our results supported that PD-1 and PD-L1 SNPs were dramatically correlated with cancer risk.
Read full abstract