Abstract Background and Purpose:There is currently a lack of recognized imaging criteria for prediction of treatment response to NAST in breast cancer patients with recent reports showing that breast MRI is the most accurate modality for evaluation of NAST response. DCE-MRI evaluates tumor perfusion that influences tumor enhancement at the post-contrast subtraction images and allows for more accurate measurement of changes in tumor volume during NAST. In this study, we evaluated the ability of tumor volumetric changes after 2 and 4 cycles of NAST by longitudinal ultrafast DCE-MRI to predict pathologic complete response (pCR) in TNBC undergoing NAST. Materials and Methods: Stage I-III TNBC patients enrolled in an IRB approved prospective clinical trial (ARTEMIS, NCT02276433) who had ultrafast DCE-MRI at baseline (BL, N=103), post 2 cycles (C2, N=59), and post 4 cycles (C4, N=103) of anthracycline-based NAST,and had surgery, were included in this analysis. Tumor volume was calculated using 3D measurements of the index lesion at BL, C2, and C4. Percent change of tumor volume (%TV) between BL, C2, and C4 was calculated at early (9-12 sec) and delayed (360-480 sec) phases of DCE-MRI. The largest lesion was used for analysis in patients with multicentric or multifocal disease. Demographic, clinical, and pathologic data and treatment response at surgery (pCR versus non-pCR) were documented. Receiver operating characteristics curve (ROC) analysis was performed for prediction of pCR status. Positive predictive value (PPV), negative predictive value (NPV) and Youden Index were used to select %TV cut-off thresholds for pCR prediction.Results: 103 patients (median age, 53 years; range, 24-79 years) were included, 48 (47%) had pCR, and 55 (53%) had non-pCR at surgical pathology. The %TV reduction at C2 DCE-MRI was predictive of pCR on both early phase DCE MRI (AUC, 0.873; CI:0.779-0.968, p < .0001) and delayed phase DCE MRI (AUC, 0.844; CI:0.742-0.947, p < .0001). Optimal thresholds were as follows: 70% TV reduction on early phase DCE MRI with Youden’s index of 1.58 was able to predict pCR correctly for 79% of patients with PPV of 81%; 75% TV reduction on delayed phase with Youden’s Index of 1.44 was able to predict pCR correctly for 71% of patients with PPV of 85%.%TV reduction was also predictive of pCR at the C4 time point on both early phase DCE MRI (AUC, 0.761; CI:0.665-0.856, p < .0001) and delayed phase DCE MRI (AUC, 0.737; CI:0.641-0.833, p < .0001). Optimal thresholds were as follows: 90% TV reduction on early phase DCE MRI with Youden’s index of 1.43 was able to correctly predict pCR in 72% of patients with PPV of 70%; and 90% TV reduction on delayed phase with Youden’s Index of 1.34 was able to predict pCR correctly in 68% of patients with PPV of 71%.Conclusion: Our data shows that percent tumor volume reduction by DCE-MRI after 2 and 4 cycles of NAST was able to predict pCR in TNBC with high accuracy and can be used as an early imaging biomarker of NAST response prediction. Volumetric changes by longitudinal DCE-MRI can be used to differentiate chemoresistant and chemosensitive TNBC patients as early as after 2 cycles of NAST, and can help to triage patients for treatment de-escalation or targeted therapy. Citation Format: Gaiane Margishvili Rauch, Adrada E Beatriz, Rosalind P Candelaria, Nabil Elshafeey, Abeer H Abdelhafez, Benjamin C Musall, Jia Sun, Medina Boge, Rania M.M Mohamed, Jong Bum Son, Shu Zhang, Jessica Leung, Deanna Lane, Marion Scoggins, David Spak, Elsa Arribas, Lumarie Santiago, Gary J Whitman, Huong T. Le-Petross, Tanya W Moseley, Jason B. White, Elizabeth Ravenberg, Ken-Pin Hwang, Peng Wei, Lei Huo, Jennifer K Litton, Vicente Valero, Debu Tripathy, Alastair M Thompson, Mark D Pagel, Jingfei Ma, Wei T Yang, Stacy Moulder. Volumetric changes on longitudinal dynamic contrast enhanced MR imaging (DCE-MRI) as an early treatment response predictor to neoadjuvant systemic therapy (NAST) in triple negative breast cancer (TNBC) patients [abstract]. In: Proceedings of the 2020 San Antonio Breast Cancer Virtual Symposium; 2020 Dec 8-11; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2021;81(4 Suppl):Abstract nr PD6-07.
Read full abstract