An anaerobic microbial consortium capable of reductively dehalogenating 2,4,6-triiodophenol (2,4,6-TIP) was enriched from the marine sponge Hymeniacidon sinapium. The enrichment reductively deiodinated 100μM of 2,4,6-TIP to 4-iodophenol (4-IP) and 2-iodophenol (2-IP) in the presence of sterile sponge tissue as the sole carbon source and electron donor. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis revealed that bacteria closely related with Vallitalea guaymasensis and Oceanirhabdus sediminicola, both of which are members of the order Clostridiales, were predominant in the enrichment. When glucose was added to the enrichment as alternative carbon source, one of these bacteria grew predominantly, which was subsequently isolated as a pure culture. The strain, designated as TIP-1, showed 99.7% 16S rRNA gene sequence similarity with V. guaymasensis. In the presence of glucose, strain TIP-1 reductively deiodinated 2,4,6-TIP to 2-IP and 4-IP at a molar ratio of 3:1, during which 2,4-diiodophenol (2,4-DIP) and 2,6-diiodophenol (2,6-DIP) were observed as deiodinated intermediates. Glucose was required for 2,4,6-TIP deiodination, but 2,4,6-TIP was not essential for growth of strain TIP-1. The strain also deiodinated 2,4-DIP to 2-IP and 4-IP at a molar ratio of 1:1, and 2,6-DIP to 2-IP, but further deiodination of the monoiodophenols was not observed. These results suggest that strain TIP-1 removed both ortho- and para-substituted iodines equally. Such deiodinating bacteria could be applied to the mineralization or dehalogenation of triiodobenzene derivatives, which are widely used as X-ray contrast media.
Read full abstract