To ensure health and safety of outdoor workers exposed to harsh environment, particularly during summer, they must be protected against heat-related injuries. Personal cooling device like cooling vest are viable solution in such situations considering their cooling capabilities and ergonomic aspects. In the present study, a 3D numerical model is developed for analyzing performance of PCM vest and it is validated with experimental results obtained from a torso thermal manikin facility fabricated in-house. Thermal performance of the PCM vest is analyzed in terms of temperature, liquid fraction and energy storage of PCM and skin temperature for different thermophysical properties of PCM, ambient conditions and mode of operations. Based on the study, PCM with higher latent heat and melting temperature is recommended for the longer working duration of the vest. Increasing ambient temperature from 40 °C to 45 °C reduces the effectiveness time by 20 % while decreasing ambient temperature from 40 °C to 35 °C increases effectiveness time of the PCM vest by 32 %. Fraction of energy stored by the PCM from the body and environment remains unaffected by the change in the latent heat of PCM. Further, it is noticed that increasing the air flow rate or using the PCM vest in hybrid mode of operation is not recommended from the point of view of its effective useable duration. Overall, the study presents a comprehensive approach to estimate performance of the PCM vest realistically and provides guidelines for the design of effective cooling vest for various practical applications.