ABSTRACTWe report sol-gel process of Pb5Ge3O11 (PGO) as well as the microstructure and physical properties of ferroelectric PGO films for memory applications. The PGO sol was prepared from lead acetate hydrate, germanium isopropoxide, and di(ethylene glycol) ethyl ether. The reactions taking place during the sol-gel process were examined in detail. Diethanolamine (DEA) was added to help maintain the desired species ratio and prevent germanium oxide precipitation. The preferred orientation of the PGO thin films was well controlled by the heating and reflux procedures in the sol-gel preparation process. Additionally, to examine the impact of postdeposition processing, selected samples were oxygen annealed at temperatures ranging from 450–650°C. The samples were characterized with X-ray diffraction (XRD), non-contact (planview) atomic force microscopy (NC-AFM). The resulting data indicate that the microstructure and physical properties of PGO films depend strongly on the precursor preparation as well as the post deposition annealing temperature.