Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.
Read full abstract