Currently, straw biodegradation and soil improvement in rice-mushroom rotation systems have attracted much attention. However, there is still a lack of studies on the effects of rice-mushroom rotation on yield, soil properties and microbial succession. In this study, no treatment (CK), green manure return (GM) and rice straw return (RS) were used as controls to fully evaluate the effect of Stropharia rugosoannulata cultivation substrate return (SRS) on soil properties and microorganisms. The results indicated that rice yield, soil nutrient (organic matter, organic carbon, total nitrogen, available nitrogen and available potassium) and soil enzyme (urease, saccharase, lignin peroxidase and laccase) activities had positive responses to the rice-mushroom rotation. At the interannual level, microbial diversity varied significantly among treatments, with the rice-mushroom rotation significantly increasing the relative alpha diversity index of soil bacteria and enriching beneficial microbial communities such as Rhizobium, Bacillus and Trichoderma for rice growth. Soil nutrients and enzymatic activities were significantly correlated with microbial communities during rice-mushroom rotation. The fungal-bacterial co-occurrence networks were modular, and Latescibacterota, Chloroflexi, Gemmatimonadota and Patescibacteria were closely related to the accumulation of nutrients in the soil. The structural equation model (SEM) showed that fungal diversity responded more to changes in soil nutrients than did bacterial diversity. Overall, the rice-mushroom rotation model improved soil nutrients and rice yields, enriched beneficial microorganisms and maintained microbial diversity. This study provides new insights into the use of S. rugosoannulata cultivation substrates in the sustainable development of agroecosystems.
Read full abstract