The pro-inflammatory cytokine IL-6 has been associated with the progression of PCa to a castration-resistant phenotype. In this work, we characterized the biochemical changes evoked by IL-6 in three different models of PCa cells, including LNCaP, C4-2, and PC3. The effect of IL-6 on PCa cells was compared with the effect obtained by co-stimulation with the cAMP-inducing agent forskolin (FSK). Stimulation of LNCaP cells with IL-6 or IL-6+FSK evoked increased expression of the neuroendocrine marker tubulin IIIβ and Cav3.2T-type Ca2+ channel subunit. PC3 cells, representing a more advanced state of PCa, had high levels of tubulin IIIβ expression without any further changes observed by treatment with IL-6 or IL-6+FSK. Elevated expression of the glucocorticoid receptor was observed in PC3, but not in LNCaP or C4-2 cells. Glucocorticoid receptor expression was not regulated by IL-6 stimulation of LNCaP or C4-2 cells. IL-6 acting alone or together with FSK evoked a significant reduction in the expression of the transcription factor REST and retinoblastoma tumor suppressor protein Rb1. In LNCaP cells, IL-6 acting alone or together with FSK had no effect on the expression of several biological markers of advanced PCa, including Aurora kinase A, valosin-containing protein, calcium-sensing receptor, calreticulin, S100A protein, and Protein S. In PC3 cells, co-treatment with IL-6+FSK evoked increased expression of REST and S100A proteins, as well as a reduction in Protein S levels. These findings reveal a complex pattern of biochemical changes in PCa cells under the influence of IL-6.