Porphyra is one of the most economically valuable species of red algae, with porphyran being its primary bioactive polysaccharide. Highly active enzymes play a significant role in the research and development of porphyran. This study identified a PKD domain within a polysaccharide-binding protein, displaying an apparent molecular weight (Mw) of 20.20 kDa that is approximately twice the theoretical value, thereby suggesting the possibility of self-aggregation. By fusing it with porphyranase Por16B_Wf, a chimeric enzyme PKD-Por16B was constructed. It was confirmed that the fusion enzyme successfully assembles into an aggregation under the mediation of PKD domain, with its apparent Mw (65.13 kDa) significantly higher than theoretical Mw (46.02 kDa). The activity of PKD-Por16B was remarkably enhanced from 65.31 U/mg to 325.69 U/mg, accompanied by an improvement in enzymatic stability. Meanwhile, the hydrolysis pattern of PKD-Por16B remained unaltered in comparison to that of Por16B_Wf, indicating no significant deviation in its substrate specificity or reaction mechanism. These results suggest the feasibility of a strategy based on domain-induced aggregation to enhance enzyme activity, which is easy and economical.