Reshaping the tectonic evolution of the Proto-Tethys Ocean is of paramount significance for comprehending the ocean-continent transitions since the Neoproterozoic. Nevertheless, the intricacies of this evolution, particularly during its early stage, remain a pivotal issue that needs further deciphering. The discovery of early Ediacaran ophiolites within the East Kunlun Orogen offers a crucial clue for exploring this issue. This study presents intergrade field geology, zircon U–Pb geochronology and whole-rock geochemistry on the related rocks from this specific ophiolite identified in the Xueqiong area, easternmost East Kunlun Orogen. Field investigations reveal the currently remaining dismembered Xueqiong ophiolite merely include gabbro, basalt and chert, which are in the form of tectonic blocks within an ophiolitic mélange. Zircon U–Pb dating results show that the gabbro samples from two near rock slices yield consistent weighted mean ages of 597 ± 5 Ma and 601 ± 2 Ma, whereas the basalt sample gives a similar age of 600 ± 6 Ma as well, indicating the magmatic component of the ophiolitic suite was formed at ca. 600 Ma during the early Ediacaran. Geochemical analysis indicates that all the gabbro and basalt share a common parental magma. Patterns of rare earth and trace elements show their properties between the enriched mid-ocean ridge basalt and oceanic island basalt models, along with their characteristic trace element covariances aligning with enriched mid-ocean ridge basalt, suggesting a mantle source similar to the enriched mid-ocean ridge basalt, with interaction with the residual asthenosphere mantle material. Relatively low SiO2, TFe2O3 and MnO2 contents and flat rare earth element patterns of chert, suggesting its lithogenic property and restricted basin setting near the continental margin. These findings collectively indicate that the Xueqiong ophiolite represents remnants of the oceanic lithosphere and overlying deep-sea sediments from the early-stage evolution of the Proto-Tethys Ocean, when the ocean evolution might not have been fully mature and oceanic floor sedimentation capable of receiving terrigenous detritus. This evidence further supports that the Proto-Tethys Ocean in the East Kunlun domain could be traced back at least to the early Ediacaran.
Read full abstract