Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are therefore needed. As a first step towards this goal, we tested a novel machine learning-based EEG-TMS system that identifies personalized brain activity patterns reflecting strong and weak corticospinal tract (CST) output (strong and weak CST states) in healthy adults in real-time. Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG training dataset, personalized classifier training, and real-time EEG-informed single pulse TMS during classifier-predicted personalized CST states. MEP amplitudes elicited in real-time during personalized strong CST states were significantly larger than those elicited during personalized weak and random CST states. MEP amplitudes elicited in real-time during personalized strong CST states were also significantly less variable than those elicited during personalized weak CST states. Personalized CST states lasted for ~1-2 seconds at a time and ~1 second elapsed between consecutive similar states. Individual participants exhibited unique differences in spectro-spatial EEG patterns between personalized strong and weak CST states. Our results show for the first time that personalized whole-brain EEG activity patterns predict CST activation in real-time in healthy humans. These findings represent a pivotal step towards using personalized brain state-dependent TMS interventions to promote poststroke CST function.
Read full abstract