How can we discover interesting patterns from time-evolving high-speed data streams? How to analyze the data streams quickly and accurately, with little space overhead? How to guarantee the found patterns to be self-consistent? High-speed data stream has been receiving increasing attention due to its wide applications such as sensors, network traffic, social networks, etc. The most fundamental task on the data stream is frequent pattern mining; especially, focusing on recentness is important in real applications. In this paper, we develop two algorithms for discovering recently frequent patterns in data streams. First, we propose TwMinSwap to find top-k recently frequent items in data streams, which is a deterministic version of our motivating algorithm TwSample providing theoretical guarantees based on item sampling. TwMinSwap improves TwSample in terms of speed, accuracy, and memory usage. Both require only O(k) memory spaces and do not require any prior knowledge on the stream such as its length and the number of distinct items in the stream. Second, we propose TwMinSwap-Is to find top-k recently frequent itemsets in data streams. We especially focus on keeping self-consistency of the discovered itemsets, which is the most important property for reliable results, while using O(k) memory space with the assumption of a constant itemset size. Through extensive experiments, we demonstrate that TwMinSwap outperforms all competitors in terms of accuracy and memory usage, with fast running time. We also show that TwMinSwap-Is is more accurate than the competitor and discovers recently frequent itemsets with reasonably large sizes (at most 5–7) depending on datasets. Thanks to TwMinSwap and TwMinSwap-Is, we report interesting discoveries in real world data streams, including the difference of trends between the winner and the loser of U.S. presidential candidates, and temporal human contact patterns.
Read full abstract