Phyllosphere-associated microbes can significantly alter host plant fitness, with distinct functions provided by bacteria inhabiting the epiphytic (external surface) vs endophytic niches (internal leaf tissue). Hence, it is important to understand the assembly and stability of these phyllosphere communities, especially in field conditions. Broadly, epiphytic communities should encounter more environmental fluctuations and frequent immigration, whereas endophytic microbiota should face stronger host selection. As a result, we expect greater variability in epiphytic than endophytic communities. We analyzed the structure and stability of leaf phyllosphere microbiota of four traditionally cultivated rice landraces and one commercial variety from northeast India grown in the field for 3 consecutive years, supplemented with opportunistic sampling of eight other landraces. Epiphytic and endophytic bacterial communities shared dominant core genera such as Methylobacterium and Sphingomonas. Consistent with an overall strong environmental effect, both communities varied more across sampling years than across host landraces. Seeds sampled from a focal landrace did not support vertical transmission of phyllosphere bacteria, suggesting that both types of communities are assembled anew each generation. Despite these points of convergence, epiphytic communities had distinct composition and significantly higher microbial load and were more rich, diverse, modular, and unstable than endophytic communities. Finally, focused sampling of one landrace across developmental stages showed that the divergence between the two types of communities arose primarily at the flowering stage. Thus, our results show both convergent and divergent patterns of community assembly and composition in distinct phyllosphere niches in rice, identifying key bacterial genera and host developmental stages that may aid agricultural interventions to increase rice yield.IMPORTANCEPhyllosphere (leaf-associated) microbes significantly impact plant fitness, making it crucial to understand how these communities are assembled and maintained. While many studies have analyzed epiphytic (surface) phyllosphere communities, we have a relatively poor understanding of endophytic communities which colonize the very distinct niche formed inside leaf tissues. We found that across several rice landraces, both communities are largely colonized by the same core genera, indicating divergence at the species level across the two leaf niches and highlighting the need to understand the mechanisms underlying this divergence. Surprisingly, both epiphytic and endophytic communities were only weakly shaped by the host landrace, with a much greater role for environmental factors that likely vary over time. Thus, microbiome-based agricultural interventions for increasing productivity could perhaps be generalized across rice varieties but would need to account for the temporal instability of the microbiota. Our results thus highlight the importance of data sets such as ours-with extensive sampling across landraces and years-for understanding phyllosphere microbiota and their applications in the field.