OBJECTIVE The objective of this study was to assess the incidence, diagnosis, and treatment of pediatric blunt cerebrovascular injury (BCVI) at a busy Level 1 trauma center and to develop a tool for accurately predicting pediatric BCVI and the need for diagnostic testing. METHODS This is a retrospective cohort study of a prospectively collected database of pediatric patients who had sustained blunt trauma (patient age range 0-15 years) and were treated at a Level 1 trauma center between 2005 and 2015. Digital subtraction angiography, MR angiography, or CT angiography was used to confirm BCVI. Recently, the Utah score has emerged as a screening tool specifically targeted toward evaluating BCVI risk in the pediatric population. Using logistical regression and adding mechanism of injury as a logit, the McGovern score was able to use the Utah score as a starting point to create a more sensitive screening tool to identify which pediatric trauma patients should receive angiographic imaging due to a high risk for BCVI. RESULTS A total of 12,614 patients (mean age 6.6 years) were admitted with blunt trauma and prospectively registered in the trauma database. Of these, 460 (3.6%) patients underwent angiography after blunt trauma: 295 (64.1%), 107 (23.3%), 6 (1.3%), and 52 (11.3%) patients underwent CT angiography, MR angiography, digital subtraction angiography, and a combination of imaging modalities, respectively. The BCVI incidence (n = 21; 0.17%) was lower than that in a comparable adult group (p < 0.05). The mean patient was age 10.4 years with a mean follow-up of 7.5 months. Eleven patients (52.4%) were involved in a motor vehicle collision, with a mean Glasgow Coma Scale score of 8.6. There were 8 patients (38.1%) with carotid canal fracture, 6 patients (28.6%) with petrous bone fracture, and 2 patients (9.5%) with infarction on initial presentation. Eight patients (38.1%) were managed with observation alone. The Denver, modified Memphis, Eastern Association for the Surgery of Trauma (EAST), and Utah scores, which are the currently used screening tools for BCVI, misclassified 6 (28.6%), 6 (28.6%), 7 (33.3%), and 10 (47.6%) patients with BCVI, respectively, as "low risk" and not in need of subsequent angiographic imaging. By incorporating the mechanism of injury into the score, the McGovern score only misclassified 4 (19.0%) children, all of whom were managed conservatively with no treatment or aspirin. CONCLUSIONS With a low incidence of pediatric BCVI and a nonsurgical treatment paradigm, a more conservative approach than the Biffl scale should be adopted. The Denver, modified Memphis, EAST, and Utah scores did not accurately predict BCVI in our equally large cohort. The McGovern score is the first BCVI screening tool to incorporate the mechanism of injury into its screening criteria, thereby potentially allowing physicians to minimize unnecessary radiation and determine which high-risk patients are truly in need of angiographic imaging.