Many bacterial surface proteins and carbohydrates are modified with phosphorylcholine (ChoP), which contributes to host mimicry and can also promote colonization and survival in the host. However, the ChoP biosynthetic pathways that are used in bacterial species that express ChoP have not been systematically studied. For example, the well-studied Lic-1 pathway is absent in some ChoP-expressing bacteria, such as Neisseria meningitidis and Neisseria gonorrhoeae. This raises a question as to the origin of the ChoP used for macromolecule biosynthesis in these species. In the current study, we used in silico analyses to identify the potential pathways involved in ChoP biosynthesis in genomes of the 26 bacterial species reported to express a ChoP-modified biomolecule. We used the four known ChoP biosynthetic pathways and a ChoP transferase as search terms to probe for their presence in these genomes. We found that the Lic-1 pathway is primarily associated with organisms producing ChoP-modified carbohydrates, such as lipooligosaccharide. Pilin phosphorylcholine transferase A (PptA) homologs were detected in all bacteria that express ChoP-modified proteins. Additionally, ChoP biosynthesis pathways, such as phospholipid N-methyltransferase (PmtA), phosphatidylcholine synthase (Pcs), or the acylation-dependent phosphatidylcholine biosynthesis pathway, which generate phosphatidylcholine, were also identified in species that produce ChoP-modified proteins. Thus, a major finding of this study is the association of a particular ChoP biosynthetic pathway with a cognate, target ChoP-modified surface factor; i.e., protein versus carbohydrate. This survey failed to identify a known biosynthetic pathway for some species that express ChoP, indicating that a novel ChoP biosynthetic pathway(s) may remain to be identified. IMPORTANCE The modification of bacterial surface virulence factors with phosphorylcholine (ChoP) plays an important role in bacterial virulence and pathogenesis. However, the ChoP biosynthetic pathways in bacteria have not been fully understood. In this study, we used in silico analysis to identify potential ChoP biosynthetic pathways in bacteria that express ChoP-modified biomolecules and found the association between a specific ChoP biosynthesis pathway and the cognate target ChoP-modified surface factor.
Read full abstract