Emerging evidence indicates that gut dysbiosis is involved in the pathogenesis of visceral hypersensitivity (VH). However, how gut microbiota contributes to the development of VH is unknown. Here, we sought to examine the signal transduction pathways from gut to dorsal root ganglion (DRG) responsible for this. Therefore, abdominal withdrawal reflex (AWR) scores, fecal output, fecal water content, and total gastrointestinal transit time (TGITT) were assessed in Con rats, VH rats, rats treated with NaB, and VH rats treated with VSL#3. Fecal microbiota and its metabolite (short-chain fatty acids, SCFAs), mast cell degranulation in colon, lincRNA-01028, miR-143, and protease kinase C (PKC) and TRPV1 expression in DRGs were further detected. VH rats showed an increased fecal water content, a shortened TGITT, an increased abundance of Clostridium sensu stricto 1 and increased butyrate in fecal samples, an increased mast cell degranulation, an increased expression of lincRNA-01028, PKC, and TRPV1, and a decreased expression of miR-143 in DRGs compared with control rats, which could be restored by the application of probiotic VSL#3. The above-mentioned detection in rats treated with butyrate was similar to that of VH rats. We further confirm whether butyrate sensitized DRG neurons by a lincRNA-01028, miR-143, and PKC-dependent mechanism via mast cell in vitro. In co-cultures, MCs treated with butyrate elicited a higher TRPV1 current, a higher expression of lincRNA-01028, PKC, and a lower expression of miR-143 in DRG neurons, which could be inhibited by a lincRNA-01028 inhibitor. These findings indicate that butyrate promotes visceral hypersensitivity via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.IMPORTANCEIrritable bowel syndrome (IBS), characterized by visceral hypersensitivity, is a common gastrointestinal dysfunction syndrome. Although the gut microbiota plays a role in the pathogenesis and treatment of irritable bowel syndrome (IBS), the possible underlying mechanisms are unclear. Therefore, it is of critical importance to determine the signal transduction pathways from gut to DRG responsible for this in vitro and in vivo assay. This study demonstrated that butyrate sensitized TRPV1 in DRG neurons via mast cells in vivo and in vitro by a lincRNA-01028, miR-143, and PKC-dependent mechanism. VH rats similarly showed an increased abundance of Clostridium sensu stricto 1, an increased fecal butyrate, an increased mast cell degranulation, and increased expression of TRPV1 compared with control rats, which could be restored by the application of VSL#3. In conclusion, butyrate produced by the altered intestinal microbiota is associated with increased VH.
Read full abstract