To ensure the operation safety and efficiency of an autonomous rice transplanter, a path planning method of obstacle avoidance based on the improved artificial potential field is proposed. Firstly, the obstacles are divided into circular or elliptic obstacles according to the difference between the length and width of an obstacle as well as the angle between the vehicle’s forward direction and the length direction of the obstacle. Secondly, improved repulsive fields for circular and elliptic models are developed. To escape the local minimum and goal inaccessibility of the traditional artificial potential field as well as meet the requirements of agronomy and vehicle kinematics constraints, the adaptive setting and adjusting strategy for virtual goal points is proposed according to relative azimuth between obstacle and vehicle. The path smoothing method based on the B-spline interpolation method is presented. Finally, the intelligent obstacle avoidance algorithm is designed, and the path evaluation rule is given to obtain the low-cost, non-collision, smooth and shortest obstacle avoidance path. To verify the effectiveness of the proposed obstacle avoidance algorithm, simulation and field experiments are conducted. Simulation and experimental results demonstrate that the proposed improved collision avoidance algorithm is highly effective and realizable.
Read full abstract