Fatigue is a material-based phenomenon playing a significant role in the mechanical behavior of components and structures. Although fatigue has been well studied for traditional materials, such as metals, its underlying mechanisms are not thoroughly understood in novel applications such as the case of textiles used as patches to close the arteriotomy in carotid endarterectomy. The latter is a type of vascular surgery for the treatment of carotid artery disease in which after an arteriotomy and removal of atherosclerotic plaque closure is made with a patch sutured on the artery. Completion of the operation signals the initiation of complex mechanical and hemodynamic phenomena. Fatigue performance of the patch eventually determines the successful outcome of carotid endarterectomy. In this study, we evaluate with a two-fold approach the mechanics of patch angioplasty in carotid endarterectomy. First, an analytical model for the fatigue behavior of textiles is developed, considering the microstructure and geometry of the fabric. Then, the surgical procedure is simulated and a finite element analysis of the endarterectomized and patched carotid artery is employed. Stress fields are calculated, while deformation at the site of patch angioplasty indicates a potential cause for the formation of aneurismal degeneration after the surgery. Such analysis can provide a better understanding in the establishment of follow-up protocols.