Models of past plate motions in the Indian Ocean help map the supercontinent Gondwana and investigate how mantle plumes influence plate tectonics. Reducing confidence in this, however, the range of available models all produce large pre-94 Ma movements, in various kinematic senses, between India and Madagascar. There is no observational evidence for any of these motions, suggesting along with their diversity that they are artefacts stemming from contrasting resolutions of techniques used for reconstructing India and Madagascar to Antarctica. A higher resolution approach to India–Antarctica reconstruction concentrates on geophysical records of relative plate motion azimuths. Applying its results regionally eliminates Indo-Malagasy motions before 94 Ma, and prompts new hypotheses of two small tectonic plates. The early Cretaceous Mandara plate, in the Enderby Basin off East Antarctica, may have initiated and rotated at a mid-ocean ridge that was supplied by excess melt from the Kerguelen plume. The late Cretaceous Vasuki plate may have conveyed Sri Lanka southwards across the western Bay of Bengal. The 85°E and Comorin ridges may have formed at active transform fault zones along Vasuki’s margins that were supplied with excess melt from the Crozet and Marion plumes. The model confidently implies the presence of 500,000 km2 of continental crust beneath the Kerguelen Plateau, places Sri Lanka 1000 km further east within Gondwana than previous reconstructions, and casts doubt on the existence of plate kinematic signals that have previously been attributed to the arrival and spread of the Marion plume beneath India and Madagascar at ~105 Ma.