In Ethiopia, the impacts of climate change are expected to have significant consequences for agriculture and food security. This study investigates both past (1981–2010) and future (2041–2070) climate trends and their influence on the length of the growing season (LGS) in the North-Western Ethiopian highlands. Climate observations were obtained from the National Meteorological Agency of Ethiopia, while the best performing and highest resolution models from the CMIP5 experiment and RCP6 (Coupled Models Intercomparison Project and representative concentration pathway 6) were used for the analysis. Standard statistical methods were applied to compute soil water content, evaluate climate variability and trends, and assess their impact on the length of the growing season. Maximum temperature (tasmax) and minimum temperature (tasmin) inter-annual variability anomalies show that the region has experienced cooler years than hotter years in the past. However, in the future, the coolest years are expected to decrease by −1.2 °C, while the hottest years will increase by +1.3 °C. During the major rainfall season (JJAS), the area has received an adequate amount of rainfall in the past and is very likely to receive similar rainfall in the future. On the other hand, the rainfall amount in the season February to May (FMAM) is expected to assist only with early planting. For the season October to January (ONDJ), the rainfall amount may help lengthen the growing season of JJAS if properly utilized; otherwise, the season has the potential to destroy crops before and during the harvesting time. The soil water content changes in the future remain close to those of the past period. The length of growing seasons has less variable onset and cessation dates, while in the future, the length of the growing period (LGP) of 174 to 177 days will be suitable for short- and long-cycle crops, as well as double cropping, benefiting crop production yield in the North-Western Ethiopian highlands in the future.
Read full abstract