The age-related loss of muscle mass is partly accounted for by the loss of sarcomeres in series, contributing to declines in muscle mechanical performance. Resistance training biased to eccentric contractions increases serial sarcomere number (SSN) in young muscle, however, maximal eccentric training in old rats previously did not alter SSN and worsened performance. A submaximal eccentric training stimulus may be more conducive to adaptation for aged muscle. The purpose of this study was to assess whether submaximal eccentric training can increase SSN and improve mechanical function in old rats. Twelve 32-month-old male F344/BN rats completed 4 weeks of submaximal (60% maximum) eccentric plantar-flexion training 3 days/week. Pre- and post-training, we assessed in-vivo maximum isometric torque at a stretched and neutral ankle angle, the passive torque-angle relationship, and the isotonic torque-velocity-power relationship. The soleus and medial gastrocnemius (MG) were harvested for SSN measurements via laser diffraction, with the untrained leg as a control. SSN increased 11% and 8% in the soleus and MG, respectively. Training also shifted optimal torque production towards longer muscle lengths, reduced passive torque 42%, and increased peak isotonic power 23%. Submaximal eccentric training was beneficial for aged muscle adaptations, increasing SSN, reducing muscle passive tension, and improving dynamic contractile performance.
Read full abstract