Thermal management presents a significant challenge in electric design, particularly in densely packed electronic systems. This study proposes a theoretical model for radiative bionic skin that emulates human skin, enabling the self-adaptive modulation of the thermal exhaustion rate to maintain homeostasis for objects covered by the skin in fluctuating thermal environments. The proposed artificial skin consists of phase change material (VO2) nanoparticles embedded in a low-loss matrix situated on a metallic substrate with a minimal thickness of several micrometers. The findings from our theoretical analyses indicate that substantial alterations in thermal radiation power around the phase transition temperature of 340 K enable a silicone substrate to sustain a relatively stable temperature, with variations confined to ±6 K, despite external heat fluxes ranging from 150 to 450 W/m2. Furthermore, to improve the spectral resemblance to natural skin, a plasmonic surface composed of self-assembled silver nanocubes is incorporated, allowing for modifications to the visible light properties of the bionic skin while maintaining its infrared characteristics. This theoretical investigation offers a cost-effective and conformal approach to the design of ultra-compact, fully passive, and versatile thermal management solutions for robotic systems and related technologies.
Read full abstract