Abstract Obscuration of the innermost parts of active galactic nuclei (AGN) is observed in the majority of the population both in the nearby universe and at high redshift. However, the nature of the structures causing obscuration, especially in low-luminosity AGN, is poorly understood at present. We present a novel approach to multiepoch broadband X-ray spectroscopy, anchored in the long-term average spectrum in the hard X-ray band, applied to the nearby, X-ray-bright AGN in the galaxy NGC 1052. From spectral features due to X-ray reprocessing in the circumnuclear material, based on a simple, uniform-density torus X-ray reprocessing model, we find a covering factor of 80%–100% and a globally averaged column density in the range (1−2) × 1023 cm−2. This closely matches the independently measured variable line-of-sight column density range, leading to a straightforward and self-consistent picture of the obscuring torus in NGC 1052, similar to several other AGN in recent literature. Comparing this X-ray-constrained torus model with measurements of spatially resolved subparsec absorption from radio observations, we find that it may be possible to account for both X-ray and radio data with a torus model featuring a steep density gradient along the axis of the relativistic jets. This provides a valuable direction for the development of improved physical models for the circumnuclear environment in NGC 1052 and potentially in a wider class of AGN.
Read full abstract