Abstract A variety of polymer parts used in microsystems technology is manufactured by injection molding processes. Particularly the high cooling velocity negatively affects the process and the resulting part properties. The scope of this paper is to investigate the influence of the mold temperature during the injection phase on the melt flow and the mold filling as well as on the resulting part properties. The results indicate that an increasing mold temperature supports the filling behavior, although the injection pressure has more impact. An increasing mold temperature also influences the part properties. It was found that a higher mold temperature leads to a more homogeneous and spherulitic structure as well as to an increasing degree of crystallinity. As a consequence the mechanical part properties are affected, too.