In this paper, in order to search the global optimum solution with a very fast convergence speed across the whole search space, we propose a partitioned and cooperative quantum-behaved particle swarm optimization (SCQPSO) algorithm. The auxiliary swarms and partitioned search space are introduced to increase the population diversity. The cooperative theory is introduced into QPSO algorithm to change the updating mode of the particles in order to guarantee that this algorithm well balances the effectiveness and simplification. Firstly, we explain how this method leads to enhanced population diversity and improved algorithm over previous strategies, and emphasize this algorithm with comparative experiments using five benchmark test functions and five shift complex functions. After that we demonstrate a reasonable application of the proposed algorithm, by showing how it can be used to optimize the parameters for OTSU image segmentation for processing medical images. The results show that the proposed SCQPSO algorithm outperforms than the other improved QPSO in terms of the quality of the solution, and performs better for solving the image segmentation than the QPSO algorithm, the sunCQPSO algorithm, the CCQPSO algorithm.