The Partitioned Global Address Space (PGAS) programming model brings intuitive shared memory semantics to distributed memory systems. Even with an abstract and unifying virtual global address space it is, however, challenging to use the full potential of different systems. Without explicit support by the implementation node-local operations have to be optimized manually for each architecture. A goal of this work is to offer a user-friendly programming model that provides portable performance across systems. In this paper we present an approach to integrate node-level programming abstractions with the PGAS programming model. We describe the hierarchical data distribution with local patterns and our implementation, MEPHISTO, in C++ using two existing projects. The evaluation of MEPHISTO shows that our approach achieves portable performance while requiring only minimal changes to port it from a CPU-based system to a GPU-based one using a CUDA or HIP back-end.
Read full abstract