Organizing and partitioning sets of chemical structures is of considerable practical significance, e.g., in compound library analysis and the postprocessing of screening hit lists. Approaches such as unsupervised clustering are computationally demanding and dataset-dependent; on the other hand, rule-based methods, such as those based on Murcko scaffolds, have linear time complexity but are often too fine-grained, leading to a large number of singletons or sparsely populated classes. An alternative rule-based method that seeks to achieve an optimal balance when grouping compounds into sets is the 'Scaffold Identification and Naming System' (SCINS). To facilitate public use of this previously published method, here, we provide an open-source Python implementation of SCINS, dependent only on RDKit. We show that SCINS can be useful in identifying sparsely and densely populated regions in chemical space in large databases, here exemplified with Enamine REAL Diverse and ChEMBL. We find that Enamine REAL Diverse covers a much smaller SCINS space relative to ChEMBL, whereas the opposite is true when Murcko and generic Murcko scaffolds are considered. Additionally, we show that SCINS can result in chemically intuitive grouping of medium-sized sets of bioactive compounds, which can be useful in compound selection from virtual screening campaigns as well as postprocessing of experimental hit lists. Hence, in this work, we provide both an open-source implementation of SCINS and its characterization with relevant use cases.