For a sequence M=(mi)i=0∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M=(m_{i})_{i=0}^{\\infty }$$\\end{document} of integers such that m0=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_{0}=1$$\\end{document}, mi≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_{i}\\ge 2$$\\end{document} for i≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$i\\ge 1$$\\end{document}, let pM(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p_{M}(n)$$\\end{document} denote the number of partitions of n into parts of the form m0m1⋯mr\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_{0}m_{1}\\cdots m_{r}$$\\end{document}. In this paper we show that for every positive integer n the following congruence is true: pM(m1m2⋯mrn-1)≡0mod∏t=2rM(mt,t-1),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} p_{M}(m_{1}m_{2}\\cdots m_{r}n-1)\\equiv 0\\ \\ \\left( \ extrm{mod}\\ \\prod _{t=2}^{r}\\mathcal {M}(m_{t},t-1)\\right) , \\end{aligned}$$\\end{document}where M(m,r):=mgcd(m,lcm(1,…,r))\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {M}(m,r):=\\frac{m}{\ extrm{gcd}\\big (m,\ extrm{lcm}(1,\\ldots ,r)\\big )}$$\\end{document}. Our result answers a conjecture posed by Folsom, Homma, Ryu and Tong, and is a generalisation of the congruence relations for m-ary partitions found by Andrews, Gupta, and Rødseth and Sellers.
Read full abstract