In oil and gas industry, an increase in production is often achieved by injecting fracturing fluids with particles/proppants into rocks and reservoirs. There are various fracking fluids that oil and gas companies use, and some of these fracturing fluids demonstrate non-Newtonian flow behavior. In this paper, sand erosion behavior in shear-thinning carboxymethyl cellulose (CMC) solution is investigated with a jet impingement facility. Particularly, near wall flow speeds and particle impinging speeds are investigated in shear-thinning CMC fluids by Particle Image Velocimetery (PIV) and Particle Tracing Velocimetery (PTV) techniques. Computational Fluid Dynamics (CFD) are also used to predict the near wall particle impact information. The results indicate that different turbulence models resolve different near wall flow and particle impact characteristics. User Defined Functions (UDF) are developed and used to implement erosion ratio equations and simulate solid particle erosion behavior in the non-Newtonian fluid. The predictions are compared with experimental results. The results of this study can help improving erosion prediction in the hydraulic fracturing process utilizing CFD.
Read full abstract