We investigate various pursuit-evasion parameters on latin square graphs, including the cop number, metric dimension, and localization number. The cop number of latin square graphs is studied, and for $k$-MOLS$(n),$ bounds for the cop number are given. If $n>(k+1)^2,$ then the cop number is shown to be $k+2.$ Lower and upper bounds are provided for the metric dimension and localization number of latin square graphs. The metric dimension of back-circulant latin squares shows that the lower bound is close to tight. Recent results on covers and partial transversals of latin squares provide the upper bound of $n+O\left(\frac{\log{n}}{\log{\log{n}}}\right)$ on the localization number of a latin square graph of order $n.$
Read full abstract