Fully organic, radioluminescent crystalline colloidal arrays (CCAs) with covalently incorporated emitters were synthesized by using up to three organic fluorophores that were Förster resonance energy transfer (FRET) pairs with each other. The emitters were covalently incorporated into monodisperse poly(styrene-co-propargyl acrylate) nanoparticles in various combinations, resulting in blue-, green-, and red-emitting CCAs when excited with an X-ray source. The negatively charged surfaces of the monodisperse nanoparticles caused self-assembly into a crystal-like structure, which resulted in a partial photonic bandgap (i.e., rejection wavelength) within the near-visible and visible light spectrum. When the rejection wavelength of the CCA overlapped its radioluminescence, the spontaneous emission was inhibited and the emission intensity decreased. A poly(ethylene glycol) methacrylate-based hydrogel network was used to encapsulate the CCAs and stabilize their crystal-like structure. Within the hydrogel, coupling the photonic bandgap with the radioluminescence of the CCA films led to robust optical systems with tunable emissions. These fully organic, hydrogel-stabilized, radioluminescent CCAs possess mechanochromic tunable optical characteristics with future applications as potentially less toxic X-ray bioimaging materials.
Read full abstract