Cellular senescence, traditionally associated with aging and chronic diseases, has recently been identified as a potential facilitator of tissue regeneration via a senescence-associated secretory phenotype (SASP). In rodents, the meniscus is known to regenerate spontaneously from the surrounding synovium, but the mechanism, and especially its relationship to cellular senescence, remains unclear. This study investigated the contribution of cellular senescence to spontaneous repair of the rat meniscus. We created a rat partial medial meniscectomy (pMx) model to evaluate time-course changes in regenerative tissue. Immunohistochemistry revealed marked increases in p16 expression and senescence-associated beta-galactosidase (SA-β-gal) activity in the regenerating tissue at the early phase after pMx surgery. RNA sequencing of regenerating tissues identified the upregulation of genes related to aging, extracellular matrix organization, and cell proliferation. Fluorescence staining identified high expression of SOX9, a master regulator of cartilage/meniscus development, adjacent to p16-positive cells. Invitro investigations of the effect of SASP factors on synovial fibroblasts (SFs) demonstrated that conditioned medium from senescent SFs stimulated the proliferation and chondrogenic differentiation of normal SFs. Invivo histological evaluation to determine whether selective elimination of senescent cells with a senolytic drug (ABT-263) retarded spontaneous repair of meniscus invivo confirmed that ABT-263 decreased the meniscus score and expression of SOX9, aggrecan, and type 1 collagen. Our findings indicate that transient senescent cell accumulation and SASP in regenerating tissues beneficially contribute to spontaneous repair of the rat meniscus. Further research into the molecular mechanism will provide a novel strategy for meniscus regeneration based on cellular senescence.