In instrumental variable (IV) settings, such as imperfect randomized trials and observational studies with Mendelian randomization, one may encounter a continuous exposure, the causal effect of which is not of true interest. Instead, scientific interest may lie in a coarsened version of this exposure. Although there is a lengthy literature on the impact of coarsening of an exposure with several works focusing specifically on IV settings, all methods proposed in this literature require parametric assumptions. Instead, just as in the standard IV setting, one can consider partial identification via bounds making no parametric assumptions. This was first pointed out in Alexander Balke's PhD dissertation. We extend and clarify his work and derive novel bounds in several settings, including for a three-level IV, which will most likely be the case in Mendelian randomization. We demonstrate our findings in two real data examples, a randomized trial for peanut allergy in infants and a Mendelian randomization setting investigating the effect of homocysteine on cardiovascular disease.
Read full abstract