Two graphs are cospectral if their respective adjacency matrices have the same multi-set of eigenvalues. A graph is said to be determined by its spectrum if all graphs that are cospectral with it are isomorphic to it. We consider these properties in relation to logical definability. We show that any pair of graphs that are elementarily equivalent with respect to the three-variable counting first-order logic C3 are cospectral, and this is not the case with C2, nor with any number of variables if we exclude counting quantifiers. We also show that the class of graphs that are determined by their spectra is definable in partial fixed-point logic with counting. We relate these properties to other algebraic and combinatorial problems.
Read full abstract