Autonomous vehicles safeguard the security and efficiency of Internet of Vehicles systems in small industrial parks by authenticating and exchanging real-time information with transportation infrastructure. Deploying a multi-server framework reduces the risk of message blocking and privacy information leakage from centralized services. However, in traditional handover authentication protocols, there are still potential security risks such as high-overhead performance issues and single point of failure attacks. Therefore, it is considered challenging to realize efficient authentication while protecting the privacy of vehicles. In this paper, we propose a secure and efficient handover authentication protocol for autonomous vehicles in a small industrial park to address the challenges. The protocol is based on blockchain and Pedersen verifiable secret sharing scheme, which not only ensures lightweight real-time interactions between autonomous vehicles and edge servers in multi-server environments, but also strictly protects the security and privacy of both vehicles and edge servers. We prove the semantic security of the protocol under the Real-Or-Random model and perform a informal analysis of its security attributes to show that it can withstand a wide range of malicious attacks. Performance evaluation shows that the proposed protocol satisfies more security requirements and has better computational efficiency and communication cost than other related protocols.