In this work, the impact of adding vanadium, ranging from 0 to 2 wt%, on the microstructure and mechanical properties of as-cast medium manganese steel was explored. A dual phase microstructure consisting of martensite and retained austenite was observed in the 0 V, 0.05 V and 0.8 V conditions. The 2 V condition contained retained austenite, lath martensite, and δ-ferrite bands. The retained austenite fraction and prior austenite grain size initially increased at lean vanadium concentrations but significantly dropped at the highest vanadium concentration. The element distribution in the constituent phases was investigated in detail. Mn, C and Si partitioning to austenite was observed in the 0 V, 0.05 V and 0.8 V conditions. V and C segregation to the grain boundaries and significant grain refinement were evident in the 2 V condition. The findings also revealed that increasing the vanadium content led to an increase in the hardness of the steel. This assessment was validated by tensile testing, which showed an improvement in yield and tensile strength of the steel with increasing vanadium content, and were supported by reconstruction of the parent austenite grains employing martensitic structures. Finally, the influence of different strengthening mechanisms on the yield strength of as-cast, microalloyed medium-manganese steels was also discussed in terms of simulated stacking fault energy, as well as the quantitative contributions from solid solution, grain boundary, and precipitation strengthening mechanisms.