In this paper, we introduce the Parallel iteration of two-step Runge-Kutta methods for solving non-stiff initial-value problems for systems of first-order differential equations (ODEs): y′(t) = f(t, y(t)), for use on parallel computers. Starting with an s−stage implicit two-step Runge-Kutta (TSRK) method of order p, we apply the highly parallel predictor-corrector iteration process in P (EC)mE mode. In this way, we obtain an explicit two-step Runge-Kutta method that has order p for all m, and that requires s(m+1) right-hand side evaluations per step of which each s evaluation can be computed parallelly. By a number of numerical experiments, we show the superiority of the parallel predictor-corrector methods proposed in this paper over both sequential and parallel methods available in the literature.
Read full abstract