The paper explores the effects of Au nanoparticle (NP) islands deposited by sputtering technique on the surface of Nd3+-doped GeO2-PbO glasses, with double-line waveguides, produced via femtosecond laser processing for photonics. A Ti:sapphire femtosecond laser operating at 800 nm was employed to inscribe the waveguides directly into the glass, 0.7 mm beneath the surface. These waveguides were structured as pairs of parallel lines separated 10 μm. Additional procedures were undertaken to position the waveguides on the glass surface where Au NPs were deposited. Refractive index change of 10−3 at 632 nm was observed in both horizontal and vertical directions. Similar results for the beam quality factors (Mx2 and My2) at 632 nm and 1064 nm indicated x, y-symmetrical guiding. Photoluminescence and relative gain growth were observed due to Au NP islands. The relative gain reached 3.0 dB/cm representing an increase of approximately 450 % when compared to samples without the Au NP islands, and was attributed to the local field growth in their vicinities. This study highlights the potential to change Nd3+-doped GeO2-PbO glasses optical properties with Au nanoparticle islands, opening up new and promising prospects for photonics and 1064 nm optical amplifiers.
Read full abstract