The application of the discrete element method (DEM) to continuous medium problems is becoming increasingly widespread. In this work, a parallel computing method with multiple time steps based on overlapping particles is proposed. The domain decomposition method (DDM) with overlapping particles method is used to increase the speed up and shorten the computation time and meet the consistency requirements during data transmission. The multi-time-step method (MTSM) is adopted to tackle the matching of asynchronous step boundary. Data are exchanged at the boundaries in each subdomain with a message passing interface (MPI). The computational efficiency of different step ratios in both serial and parallel computing is studied respectively. Numerical examples show that the DEM can effectively handle large structure deformation problems, and provides a shorter calculation time than that of the finite element method (FEM). The DEM with multiple time steps in different subdomains effectively reduces the computation time than that with a single time step in the entire domain. Under fixed step ratio conditions, using parallel computing can save more time than serial computing. This work develops ideas for expanding the application of DEM for large engineering problems.