Patients with cholangiocarcinoma (CCA) with lymph node metastasis (LNM) have the worst prognosis, even after complete resection; however, the underlying mechanism remains unclear. Here, we established CAF-derived PDGF-BB as a regulator of LMN in CCA. Proteomics analysis revealed upregulation of PDGF-BB in CAFs derived from patients with CCA with LMN (LN+CAFs). Clinically, the expression of CAF-PDGF-BB correlated with poor prognosis and increased LMN in patients with CCA, while CAF-secreted PDGF-BB enhanced lymphatic endothelial cell (LEC)-mediated lymphangiogenesis and promoted the trans-LEC migration ability of tumor cells. Co-injection of LN+CAFs and cancer cells increased tumor growth and LMN in vivo. Mechanistically, CAF-derived PDGF-BB activated its receptor PDGFR-β and its downstream ERK1/2-JNK signaling pathways in LECs to promote lymphoangiogenesis, while it also upregulated the PDGFR-β-GSK-P65-mediated tumor cell migration. Finally, targeting PDGF-BB/PDGFR-β or the GSK-P65 signaling axis prohibited CAF-mediated popliteal lymphatic metastasis (PLM) in vivo. Overall, our findings revealed that CAFs promote tumor growth and LMN via a paracrine network, identifying a promising therapeutic target for patients with advanced CCA.