We prove the parabolic boundary Harnack inequality in parabolic flat Lipschitz domains by blow-up techniques, allowing, for the first time, a non-zero right-hand side. Our method allows us to treat solutions to equations driven by non-divergence form operators with bounded measurable coefficients, and a right-hand side f∈Lq\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f \\in L^q$$\\end{document} for q>n+2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q > n+2$$\\end{document}. In the case of the heat equation, we also show the optimal C1-ε\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^{1-\\varepsilon }$$\\end{document} regularity of the quotient. As a corollary, we obtain a new way to prove that flat Lipschitz free boundaries are C1,α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C^{1,\\alpha }$$\\end{document} in the parabolic obstacle problem and in the parabolic Signorini problem.
Read full abstract