To develop an accommodating, wide-angle, schematic eye for emmetropia and myopia in which spectacle refraction and accommodation level are input parameters. The schematic eye is based on an earlier unaccommodated refraction-dependent eye for myopia developed by Atchison in 2006. This has a parabolic gradient index lens and parameters derived from biometric and optical measurements on young adults. Several parameters are linearly dependent upon spectacle refraction (anterior radius of curvature of the cornea, axial length and vertex radii of curvature and conic asphericities of a biconic retina). The new accommodated schematic eye incorporates accommodation-dependent changes in several lens-related parameters. These changes are based on literature values for anterior chamber depth, lens thickness, vitreous chamber depth, lens surface radii of curvature and lens front surface asphericity. A parabolic variation of refractive index with relative distance from the lens centre is retained, with the same edge and centre refractive indices as the earlier model, but the distribution has been manipulated to maintain focus near the retina for the emmetropic case at 0 and 4 D accommodation. The asphericity of the lens back surface is changed so that spherical aberration and peripheral refraction approximately match typical literature trends. The model is used to compare spherical aberration and peripheral refraction in eyes with up to 4 D of myopia and 4 D of accommodation. The levels of spherical aberration in the unaccommodated schematic eyes are similar to literature values for young adults, but the changes in spherical aberration with accommodation are approximately two-thirds of that found in an experimental study. As intended, peripheral refractions in the accommodated schematic eyes are similar to those of their unaccommodated counterparts. The wide-angle model extends the range of schematic eyes to include both refraction and accommodation as variable input parameters. It may be useful in predicting aspects of retinal image quality.
Read full abstract