The G-protein coupled receptor, rhodopsin, consists of seven transmembrane helices which are buried in the lipid bilayer and are connected by loop domains extending out of the hydrophobic core. The thermal stability of rhodopsin and its bleached form, opsin, was investigated using differential scanning calorimetry (DSC). The thermal transitions were asymmetric, and the temperatures of the thermal transitions were scan rate dependent. This dependence exhibited characteristics of a two-state irreversible denaturation in which intermediate states rapidly proceed to the final irreversible state. These studies suggest that the denaturation of both rhodopsin and opsin is kinetically controlled. The denaturation of the intact protein was compared to three proteolytically cleaved forms of the protein. Trypsin removed nine residues of the carboxyl terminus, papain removed 28 residues of the carboxyl terminus and a portion of the third cytoplasmic loop, and chymotrypsin cleaved cytoplasmic loops 2 and 3. In each of these cases the fragments remained associated as a complex in the membrane. DSC studies were carried out on each of the fragmented proteins. In all of the samples the scan rate dependence of the Tm indicated that the transition was kinetically controlled. Trypsin-proteolyzed protein differed little from the intact protein. However, the activation energy for denaturation was decreased when cytoplasmic loop 3 was cleaved by papain or chymotrypsin. This was observed for both bleached and unbleached samples. In the presence of the chromophore, 11-cis-retinal, the noncovalent interactions among the proteolytic fragments produced by papain and chymotrypsin cleavage were sufficiently strong such that each of the complexes denatured as a unit. Upon bleaching, the papain fragments exhibited a single thermal transition. However, after bleaching, the chymotrypsin fragments exhibited two calorimetric transitions. These data suggest that the loops of rhodopsin exert a stabilizing effect on the protein.