Pannexin-1 (PANX1) channel participates in the development and progression of many tumor types, however, its role of PANX1 in invasive pituitary adenoma (PA) remains unknown. The current study was designed to investigate the role of PANX1 in invasion of PA. We examined the expression of PANX1 in 116 surgical invasion and non-invasion PA samples (60 for bulk transcriptome and 56 for immunohistochemistry). The effects of PANX1 on PA growth were assessed in vitro and xenograft models. Meanwhile, the metabolism changes of PA cells are explored via transcriptomics and metabolomics using integration strategy. PANX1 is significantly upregulated in invasive PA compared with noninvasive PA and pituitary gland, and have a potential diagnostic signature for invasive PA. Accordingly, overexpression of PANX1 could promote the proliferation and invasion of GH3 and MMQ cell lines in vitro and in vivo. Further metabolomics results confirme that overexpression of PANX1 could trigger changes in several metabolic pathways of GH3 cells. Among the dysregulated cellular metabolites, decreased intracellular ATP suggeste that PANX1 may promote the invasion of PA through impacting extracellular ATP concentration. Mechanistically, extracellular ATP might promote Ca2+ influx and upregulated the expression of MMP2/9 by activating P2X7R. Additionally, PANX1-ATP-P2 X7R signaling pathway might enhance GH3 cell invasion by remodeling the actin cytoskeleton. Our findings point to a pivotal role of PANX1 in promoting PA invasion, which indicated a potential therapeutic target for invasive PA.
Read full abstract