We consider the fractional Laplacian with Hardy potential and study the scale of homogeneous $L^p$ Sobolev spaces generated by this operator. Besides generalized and reversed Hardy inequalities, the analysis relies on a H\"ormander multiplier theorem which is crucial to construct a basic Littlewood--Paley theory. The results extend those obtained recently in $L^2$ but do not cover negative coupling constants in general due to the slow decay of the associated heat kernel.