Mantis shrimp swim via metachronal rowing, a pattern in which the pleopods (swimming limbs) stroke sequentially, starting with the last pair and followed by anterior neighbors. A similar swimming pattern is used at various sizes, Reynolds numbers, and advance ratios by diverse organisms including ciliates, ctenophores, copepods, krill, and lobsters. Understanding this type of locomotion is important because it is widespread and may inspire the design of underwater vehicles where efficiency, robustness, and maneuverability are desired. However, detailed measurements of the flow around free-swimming, metachronally rowing organisms are scarce, especially for organisms swimming in a high Reynolds number regime (Re ≥ 104). In this study, we present time-resolved, planar PIV measurements of a swimming peacock mantis shrimp (Odontodactylus scyllarus). Simultaneous kinematics measurements of the animal, which had body and pleopod lengths of 114 and 20 mm, respectively, reveal mean swimming speeds of 0.2-1.9 m s-1 and pleopod beat frequencies of 3.6-13 Hz, corresponding to advance ratios of 0.75-1.84 and body-based Reynolds numbers of 23,000-217,000. Further, the animal's stroke is not purely metachronal, with a long phase lag between initiation of the first and fifth pleopod power strokes. Flow measurements in the sagittal plane show that each stroking pleopod pair creates a posteriorly moving tip vortex which evades destruction by the recovery strokes of other pleopod pairs. The vortex created by the anteriormost pleopod pair is the strongest and, owing to the animal's high advance ratio, is intercepted by the power stroke of the posteriormost pleopod pair. The vortex strength increases as a result of this interaction, which may increase swimming speed or efficiency. A relationship for vortex interception by the posterior pleopod is proposed that relates the phase lag between the interacting pleopods to the beat frequency, distance between those pleopods, and speed of the vortex relative to the animal. We describe this interaction with a novel parameter called the interpleopod vortex phase matching Strouhal number StIVPM which is equal to the phase lag between interacting pleopods. This new nondimensional parameter may be useful in predicting the conditions where a constructive interaction may occur in other species or in physical models. Finally, we relate the advance ratio to the Reynolds number ratio, the ratio between the body-based Reynolds number and the pleopod-based Reynolds number. The importance of these parameters in promoting the interpleopod vortex interactions identified here, in dynamically scaled experiments, and in wake signatures behind schooling metachronal swimmers is discussed.
Read full abstract